
Cryptography

4 – Public-key encryption: RSA

G. Chênevert

October 7, 2019

mailto:gabriel.chenevert@yncrea.fr

Today

Principle

Cryptanalysis

Key generation

In practice

Asymmetric cryptography

Two different keys are used: one for encryption, one for decryption

if knowledge about one gives no information about the other

=⇒ one of them can be made public

Public-key encryption

The encryption key ke is made public (kd kept private)

anyone can write to Bob, but only he can read

As implemented by e.g. PGP/GPG

http://en.wikipedia.org/wiki/Pretty_Good_Privacy
http://en.wikipedia.org/wiki/GNU_Privacy_Guard

Famous ”asymmetric” problems

• factorization of large integers

=⇒ RSA

• discrete logarithm problem (DLP)

=⇒ Diffie-Hellman, ElGamal, DSA

• DLP over an elliptic curve

=⇒ elliptic curve cryptography (ECC): ECDH, ECDSA, . . .

• shortest vector problem

=⇒ lattice-based cryptography . . .

For two `-bit factors

Factorization is asymptotically much slower than multiplication

Try it for yourself

https://sagecell.sagemath.org/?z=eJx1kMGqwjAQRfeC_zAUhVSCWMFNoeDKnTuXD0teO9XANE3jFMSvf6mpPos6yzm55w7ZasPoVMHTyXRSYgW5IMjgQrpEJxK5SdYykclKkvpFyqLZDxLNoliCYsbacl75cOO0OWUH12Gc9iLwY73GKVM2dW6drlGsjxQH1H5GQ867GKI-Pr9EMAe7PONVxCPaPmn7oIGzB4XtuLcOEeNXdtGO_OOqxb_OvJWNnu47Ym1JF4p1Y1IfgnvsUcnPQ3T1_kNpQF_u7Cc8FeZlNTTvguT2tfgP-Lh8mQ==&lang=sage&interacts=eJyLjgUAARUAuQ==

Modular arithmetic

Recall (?)

Definition

We say that a ≡
n
b when n divides b − a, i.e. b = a + kn for some integer k

i.e. a and b are equal, up to (”modulo”) a multiple of n

Remarks:

• a ≡
n
b if and only if a% n = b % n

• If a ≡
n
b and c ≡

n
d , then (a + c) ≡

n
(b + d) and (ac) ≡

n
(bd)

Rivest-Shamir-Adleman (1977)

Fix some (large) integer n.

M = C = Z/nZ, identified with [[0, n[[

E (e,m) :≡
n
me

D(d , c) :≡
n
cd

based on modular exponentiation

Easy enough!

Or is it? (try a larger `)

https://sagecell.sagemath.org/?z=eJx1jkEKgzAQRfeCdxiCQhKCqNBNQeg5pCC2-aXCJJboosdvrMVSsLOc94Y3p8HPCP11TpM0sbhRJ5kamniwCLIyh9JUpi4N9xdwI7IzmDOh1HHxKY6PdtsWofd2dB0YDn6WtdasVsHtCv5D8Zeu_BHigySWSj4JyskXdzyl-qFuo26HYqPYu9Ua5EZL34R872JKrf4LRs1M3w==&lang=sage&interacts=eJyLjgUAARUAuQ==

Modular exponentiation

Naive algorithm to compute me % n:

r = 1

for i in [[1, e]]:

r = r ∗m
return r % n

Problems:

• intermediate result r gets LARGE

• takes e iterations

Modular exponentiation (again)

Better algorithm to compute me % n:

r = 1

for i in [[1, e]]:

r = (r ∗m) % n

return r

But:

• still takes e modular multiplications . . .

Fast exponentiation, v.1 (R to L)

Write e = b` · · · b0 in base 2, so that me ≡
n
mb0(m2)b1(m4)b2 · · · (m2`)b` .

r = 1, q = m

for i in [[0, `]]:

if bi = 1:

r = (r ∗ q) % n

q = q2 % n

return r

at most 2(` + 1) modular multiplications!

Example (v.1)

Let’s compute 3329 modulo 227.

With m = 33, n = 227 and e = 29 = 11101:

so 3329 ≡
227

113 (indeed).

Fast exponentiation, v.2 (L to R)

Can get rid of the running variable q by writing

me ≡
n

(
· · ·
(
(mb`)2mb`−1

)2
mb`−2 · · ·mb1

)2
mb0 .

r = 1

for i in [[0, `]]:

r = r2 % n

if b`−i = 1:

r = (r ∗m) % n

return r

In both cases: running time in O(log2 e)

Example (v.2)

With the same values as before:

which is coherent with previous results (but uses half the memory).

Ok: that’s fast

Indeed!

https://sagecell.sagemath.org/?z=eJx1zsEKgzAMBuC74DuEotCWIlN2EoQ9RxkTt2ZMSKpUYXv8VRyOgcslh-__SU69nzF0tzlN0sThHVpJ0MBEvcMgS1NdyqOJ62CouyI1IjsjUSaUqpcGxPExb20ROu8GbpGQ0c-y0prUGuDdgP8o_tXVxxBfBLFcyScBOfjigS-pfpQ35R3FTXGvqzUCDw6-J6yV4_CUbNB4pdbOGzP7T2k=&lang=sage&interacts=eJyLjgUAARUAuQ==

The RSA cipher (again)

E (e,m) ≡
n
me

D(d , c) ≡
n

c d

Correct decryption:

Why should there exist such exponents such that

mde ≡
n
m ∀m ??

Chinese Remainder Theorem

If n can be written as a product of coprime factors

n = n1 · · · nk ,

then there is an isomorphism of rings

Z/nZ ∼= Z/n1Z × · · · × Z/nkZ.

• (→) take remainders

• (←) use Bézout’s relation

Example

Z/12Z ∼= Z/3Z × Z/4Z

Euler’s ϕ function

Consider the number ϕ(n) of integers in [[1, n]] that are coprime with n.

Theorem (Fermat)

For all x coprime with n,

xϕ(n) ≡
n

1.

i.e., modular exponents work modulo ϕ(n): xa ≡
n
xb when a ≡

ϕ(n)
b.

Almost there

Special case: suppose n = p1 · · · pk is a product of distinct prime factors, so that

ϕ(n) = (p1 − 1) · · · (pk − 1).

Corollary

In this case, if f ≡
ϕ(n)

1 then x f ≡
n
x ∀x .

Hence: it is sufficient to ask that the RSA exponents satisfy

de ≡
ϕ(n)

1.

A small (thus very insecure) working example

Try here

https://sagecell.sagemath.org/?z=eJxdj00Kg0AMhfcDc4cgCDqU4k9tq9CLdFPECa3QRFE3vX2T1o7QTZL5Xnh5wwBwgTIHBwctVW3N-OiVZcq0VGdrrEFhVZEVJ2u8jHlWH0vl49TzAhGrUbQDDuRjI0R6YLhuYSB-JX4lm-AQaPDws9F3_DWzhiTBVdSE0_3Ush_ohk8k5CVJVe_0V-Sc3CHd7ZzzIWw4QTjP7R0biQDxHIk9bUm5m17j0g_crFq3RcN_jegNEgdUdg==&lang=sage&interacts=eJyLjgUAARUAuQ==

Today

Principle

Cryptanalysis

Key generation

In practice

Security of RSA

Public: n, e, c .

The attacker would like to recover m.

• Brute force on m: search for x such that

xe ≡
n
c .

=⇒ Impractical if n large

• Better: try to recover the decryption exponent d , then decrypt m like Bob

m ≡
n

e
√
c ≡

n
cd .

Trivial is ϕ(n) is known

Given e and ϕ(n), the extended Euclidean algorithm easily solves

de ≡
ϕ(n)

1.

But: computing ϕ(n) from n is (assumed to be) hard.

Best known algorithm: factor n = p1 · · · pk and use

ϕ(n) = (p1 − 1) · · · (pk − 1).

Factoring vs. splitting

Factoring n: finding the complete list of prime factors (p1, . . . , pk) for which

n = p1 · · · pk .

Splitting n: finding one prime factor p of n.

Essentially all known factorization algorithms are of the form

factors = []

while n > 1:

p = split(n)

factors += [p]

n = n // p

Trial division

The simplest splitting algorithm:

p = 2

while p ≤
√
n:

if n% p = 0 return p

p += 1

return n

Quickly finds small (≤ 264) prime factors

=⇒ smallest prime factor should be as large as possible

pi ≈ k
√
n =⇒ take k = 2! (why not k = 1 ?)

Other factorization algorithms

There is a very large litterature devoted to the subject of integer factorization.

As of 2019, the best general purpose algorithm is the General Number Field Sieve

(GNFS) that factors an `-bit integer in

≈ 5.5 `1/3(ln `)2/3 time.

Public factorization record: RSA-728 (2009)

http://en.wikipedia.org/wiki/Integer_factorization
http://en.wikipedia.org/wiki/RSA_numbers#RSA-768

Consequence on key length

According to RSA Security, Inc.

Symmetric key size Equivalent RSA key size

80 1024

112 2028

128 3072

256 15360

Today

Principle

Cryptanalysis

Key generation

In practice

Key generation

Recovering the decryption key should be hard for the attacker. . .

. . . but easy for Alice and Bob!

Ok since they are free to choose the prime factors of n.

Key generation: produces a RSA triple (n, d , e)

Prime factors

To generate an `-bit RSA modulus n:

• generate two random `/2-bit prime numbers p and q

• set n := p · q

To generate a random prime number:

• generate random integers until you get a prime!

(there are some very fast primality tests)

Note: density of prime numbers around x is ≈ 1
ln x

http://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test

RSA exponents

• Knowing p and q, compute ϕ(n) = (p − 1)(q − 1)

• Pick e coprime with ϕ(n) (doesn’t even need to be chosen randomly)

• Compute d such that

de ≡
ϕ(n)

1

using the extended Euclidean algorithm (XGCD)

Today

Principle

Cryptanalysis

Key generation

In practice

Real-world RSA

The plain RSA described above has all sorts of problems:

• malleability: E (e,m1) · E (e,m2) = E (e,m1 ·m2)

• lack of randomness

• fixed size of plaintext

• . . .

In practice, a suitable padding scheme needs to be used.

=⇒ use a library!

http://en.wikipedia.org/wiki/Optimal_asymmetric_encryption_padding

	Principle
	Cryptanalysis
	Key generation
	In practice

